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Single-mode regime of square-lattice photonic
crystal fibers
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The modal cutoff of square-lattice photonic crystal fibers with a finite number of air-hole rings has been accu-
rately investigated to our knowledge for the first time. By analyzing the leaky behavior of the second-order
mode, we have obtained a phase diagram that describes the regions of single-mode and multimode operation as
well as the endlessly single-mode regime. Furthermore, starting from these results, we have obtained the cut-
off normalized frequency according to two different formulations of the V parameter previously adopted for
fibers with a triangular lattice. A final comparison of the cutoff properties of fibers characterized by a square
lattice and a triangular lattice has been carried out. © 2005 Optical Society of America
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. INTRODUCTION
hotonic crystal fibers (PCFs) are characterized by an ar-
ay of air holes running along the entire fiber length,
hich provides for the confinement and guidance of

ight.1,2 Owing to the huge variety of air-hole arrange-
ents, PCFs offer many possibilities for controlling the

efractive index contrast between the core and the micro-
tructured cladding and, as a consequence, offer novel
nd unique optical properties.3 In particular, it has been
emonstrated that PCFs with a silica core, which guide
ight by modified total internal reflection, can be designed
o be endlessly single mode (that is, only the fundamental
ode can propagate in the fiber core for all wavelengths),

nlike conventional fibers that exhibit a cutoff wave-
ength below which higher-order modes are supported.4,5

cutoff analysis for PCFs is not trivial as for conven-
ional optical fibers because all the modes propagating in
CFs with a finite air-hole ring number are leaky.6–8 The
ingle-mode regime has already been successfully investi-
ated for triangular PCFs with a silica core, obtained by
emoving the central air hole in the fiber cross section,
hich are usually described by the hole-to-hole spacing or
itch, �, and the ratio d /� between the air-hole diameter
nd the pitch.5,9–11 In particular, it has been demon-
trated that triangular PCFs are endlessly single mode
or d /��d* /�, and recently the value d* /��0.406 has
een proposed.10,11

The aim of the present analysis is to study the cutoff
roperties of square-lattice PCFs, that is, to investigate
he boundary between the single-mode and the multi-
ode operation regimes. In these PCFs, air holes are or-

anized in a square lattice characterized by the same geo-
etric parameters as the triangular ones, � and d /�, as

hown in Fig. 1. Researchers have already demonstrated
he technological feasibility of square-lattice PCFs, which
an be drawn from intermediate preforms realized with
he standard stack-and-draw fabrication process.12 Re-
ently, square-lattice fibers have been fabricated and
haracterized in order to analyze their polarization prop-
1084-7529/05/081655-7/$15.00 © 2
rties, and a great potential for high birefringence has
een shown.13 Promising results have also been obtained
y numerically investigating their guiding,14 dispersion,15

nd polarization16 properties. Moreover, compared with
riangular PCFs,15 they present a wider effective area for
xed d /� and � values, so they can be of practical inter-
st as large-mode-area fibers for high-power delivery. In
rder to successfully use square-lattice PCFs for this kind
f application, it is necessary to accurately define their
ingle-mode operation regime.

In this work the cutoff analysis of the square-lattice
CFs has been carried out through a method previously
dopted for fibers with a triangular lattice, based on the
eaky nature of the second-order mode,9 and the phase
iagram with the boundary between single-mode and
ultimode regions has been obtained. Results have

hown that the endlessly single-mode regime for square-
attice PCFs is a bit wider than that for triangular ones.

Finally, the information about the single-mode regime
as been used to evaluate the cutoff value V* of the nor-
alized frequency V. As in the case of triangular
CFs,5,11,17 the problem is to properly choose the values of
he parameters involved in the definition of V, in particu-
ar, the core dimension. In the present analysis, two dif-
erent definitions of the V parameter have been consid-
red, and the obtained V* values have been compared
ith those given for triangular PCFs.

. THEORETICAL APPROACH
ifferent approaches have been proposed in previous

tudies to study the single-mode regime of triangular
CFs, which is the wavelength range where only the first-
rder mode is guided and the higher-order ones are un-
ound. In particular, it is necessary to decide clearly at
hich wavelength �* the second-order mode is no longer
uided; that is, it becomes a delocalized cladding mode. In
rder to find this transition, it is possible to take into ac-
ount the divergence at long wavelengths of its effective
005 Optical Society of America
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rea18 or its leakage losses, which are related to the at-
enuation constant �, the real part of the complex propa-
ation constant.6,8 In particular, the normalized cutoff
avelength �* /� can be evaluated by observing the tran-

ition shown by the behavior of � /k0, where k0 is the wave
umber, versus � /�.9 This can be made evident by calcu-

ating the Q parameter,

Q =
d2 log��/k0�

d2 log���
, �1�

ecause it exhibits a sharp negative minimum at �* /�.9

n the present analysis the phase diagram with single-
ode and multimode operation for square-lattice PCFs
as been obtained by calculating the Q parameter for dif-
erent normalized wavelengths � /� and by evaluating its
egative minima for PCFs with d /� in the range of 0.45–
.57. The analysis has been developed by fixing the
uided-mode wavelength at 633 nm as well as at 1550
m. The hole-to-hole distance � has been properly se-

ected to obtain the desired normalized wavelength value.
wing to the strong influence of the air-hole ring number
n the leakage losses of PCFs with a finite cross section,6,7

bers with four, six, and eight rings have been considered
or the modal cutoff analysis. In fact, it has been already
emonstrated that the transition of the Q parameter be-
omes more acute and the method more reliable as the
ing number increases.9

As a second part of the proposed analysis, starting from
he single-mode regime information obtained with the
-parameter approach, we have evaluated the normal-

zed cutoff frequency V*. The V parameter can be easily
alculated in a standard optical fiber, since it depends on
he core radius and the core and cladding refractive indi-
es, which are all well defined. The choice of these param-
ters for PCFs is not trivial, and several formulations of
he normalized frequency have been proposed in the
iterature,5,11,17,19–21 on the basis of either geometric and
hysical considerations or analogies with classical theory
f conventional fibers. In this study, two formulations of
he V parameter are considered. The first one is

V1 =
2�

�
��neff

2 − nFSM
2 , �2�

hich has been recently proposed for triangular
CFs.11,22 In Eq. (2) neff and nFSM are the effective indices,
espectively, of the fundamental guided mode and of the

ig. 1. Cross section of a four-air-hole-ring square-lattice PCF
ith air-hole diameter d and pitch �.
undamental space-filling mode in the air-hole cladding.
he choice of � as the effective core radius can be adopted
lso for the PCFs studied here, since it is the natural
ength scale of both the triangular and the square
attices.11,22 The second V-parameter definition here con-
idered, more similar to the one used for conventional fi-
ers, is

V2 =
2�

�
��nco

2 − nFSM
2 , �3�

here nco is the refractive index of the silica core at the
peration wavelength and � is the effective core radius.
or properly adapting the concept of the V parameter to

he PCFs, several values for � have been proposed in the
iterature for fibers characterized by a triangular lattice,
hich are 0.5�,23 � /�3,20,21 0.625�,17 0.64�,19 and �.5,17

n the present study the effective core radius for the
quare-lattice PCFs has been assumed equal to 0.67�.
his value, different from all the others previously
dopted for triangular PCFs, has been evaluated through
he method proposed by Brechet et al.19

The cutoff value V1
* here calculated for the square-

attice PCFs has also been compared with the value pre-
iously obtained for triangular ones.11 Then the second-
rder-mode field distribution has been analyzed in order
o extend the approach proposed for triangular PCFs11 to
he square-lattice ones.

Finally, it is important to point out the numerical meth-
ds used in this analysis. The complex propagation con-
tants of the fundamental and the second-order modes as
ell as the field distributions have been calculated by
eans of a full-vectorial modal solver based on the finite-

lement method with anisotropic perfectly matched
ayers.6,8,24 The multipole method25,26 has also been used
o confirm the simulation results, obtaining a good agree-
ent. The effective index of the mode in the infinite clad-

ing, i.e., the fundamental space-filling mode nFMS, has
een evaluated using a freely available software
ackage.27

. RESULTS AND DISCUSSION
n order to calculate the Q parameter according to Eq. (1),
ne must evaluate the behavior of � /k0 versus the nor-
alized wavelength � /� for the second-order mode. As

hown in Fig. 2, for eight-ring PCFs with different d /�
alues, � /k0 increases with � /�; that is, the confinement
f the second-order mode is lower for smaller pitch �. For
ll the considered d /� ratios, the curves show a transi-
ion, which is a change in the slope that becomes sharper
s the air-hole diameter increases with respect to the
itch. Moreover, when d /� is varied from 0.45 to 0.57, the
ransition region moves toward the higher � /� values, as
as already been demonstrated for triangular PCFs.9 In
ddition, notice that when d /�=0.45 it is difficult to iden-
ify the transition, which, in contrast, is very sharp when
/�=0.57. The same behavior of � /k0 has been obtained

or square-lattice PCFs with the lower air-hole ring num-
ers of four and six. However, it must be observed that, in
hese cases, as shown in Fig. 3, the transition is not so
harp even for a high d /� value.
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From the previous results, the Q parameter has been
alculated through a finite-difference formula, and the
alues obtained for the eight-ring square-lattice PCFs are
eported in Fig. 4. The negative value of the curve mini-
um becomes higher as d /� increases, reaching −654 at
/��0.532 for d /�=0.57. As the square-lattice PCF air-
lling fraction decreases, the Q minimum moves toward
he lower � /� values and becomes wide and difficult to
dentify with high precision. For example, the negative

inimum almost disappears for the PCFs with d /�
0.45, and its curve has not even been drawn in the fig-
re. A similar behavior has also been obtained for PCFs
ith fewer air-hole rings. Figure 5, for example, reports
ata for PCFs with d /�=0.57, showing that the Q mini-
um becomes less negative and moves toward higher � /�

alues when the ring number decreases. In particular, for
our-ring fibers the dip is very wide, and the most nega-
ive value is only −73 at � /��0.571, whereas it is −260 at
/��0.541 when the square-lattice PCFs have six air-
ole rings.
In summary, Figs. 2–5 clearly show that when the leak-

ge behavior is strong, whatever the reason, i.e., low d /�

ig. 2. Second-order mode � /k0 as a function of the normalized
avelength � /� for eight-ring square-lattice PCFs with d /� in

he range of 0.45–0.57.

ig. 3. Second-order mode � /k0 versus the normalized wave-
ength � /� as a function of the air-hole ring number, which is
our, six, or eight, for a square-lattice PCF with d /�=0.57.
r few hole rings, it is difficult to define the transition re-
ion and the related cutoff wavelength. In contrast, when

high number of hole rings is considered, the slope
hange in � /k0 is more evident, the Q curve presents a
harp dip, and it is possible to find reliable values of the
ormalized cutoff wavelength �* /�. These values for the
quare-lattice PCFs with eight air-hole rings are reported
n Fig. 6, which also shows data for four- and six-ring
CFs. Notice that the �* /� values have been reported
nly for the well-defined and sharp minima, that is, for
/��0.48 for eight-ring PCFs and for d /��0.50 for four-
nd six-ring PCFs. As expected, results change by in-
reasing the air-hole rings, tending to the values of a PCF
ith an ideal infinite cladding. This suggests again that

he Q-parameter method must be applied assuming a
igh ring number.
This conclusion is confirmed also by further comments

n the obtained results. Looking at Fig. 6, it seems that
CFs with four air-hole rings have a smaller single-mode
egion, defined by � /���* /�, their cutoff values being
he highest ones. However this result is in contradiction

ig. 4. Q-parameter values as a function of the normalized
avelength � /� for eight-ring square-lattice PCFs with d /� in

he range of 0.45–0.57.

ig. 5. Q-parameter values versus the normalized wavelength
/� as a function of the air-hole ring number, which is four, six,
r eight, for a square-lattice PCF with d /�=0.57.
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ith the � /k0 values reported in Fig. 3, which are also the
ighest for all the considered � /�. Figure 3, in fact, indi-
ates that the second-order mode suffers from high leak-
ge losses, and, consequently, only the fundamental mode
an actually propagate in a wider single-mode spectral
ange. In other words, the Q-parameter approach fails
hen a sharp minimum does not occur as shown in Fig. 5

or the case of four air-hole rings. In contrast, when eight
ole rings are considered, results are clearly readable and
eliable.

It is important to highlight that the �* /� evaluated for
CFs with many rings of air holes also applies to fibers
ith few rings in that �* /�, in any case, is an upper limit
f the cutoff wavelength. This means that fibers with a re-
uced number of rings present an even larger single-mode
egion.

In order to give a further confirmation of what is
tated, the normalized cutoff wavelength has also been
valuated according to another approach, the method
ased on the second-order-mode effective area proposed
y Mortensen.18 Simulation results for the PCFs with
/�=0.52 are shown in Fig. 7. Notice that the �* /� val-
es, indicated by the crossing of the solid lines with the
orizontal axis, are, respectively, 0.273, 0.302, and 0.308

ig. 6. Normalized cutoff wavelength �* /� as a function of the
/� ratio for square-lattice PCFs with four, six, and eight air-
ole rings.

ig. 7. Second-order-mode normalized effective area Aeff /�2 ver-
us � /� for square-lattice PCFs with d /�=0.52 and with four,
ix, and eight air-hole rings.
or the PCFs with four, six, and eight air-hole rings. This
eans that �* /� increases with the air-hole ring number;

hat is, the PCFs that provide the better field confinement
ave the smallest single-mode operation region and not
he other way round as could be suggested by Fig. 6.
oreover, the difference between the normalized cutoff
avelength values almost vanishes if PCFs with six and
ight rings are considered.

Thus eight-ring square-lattice PCFs offer the most re-
iable results and, in the following, will also be used to
ompare square- and triangular-lattice PCF characteris-
ics.

A first interesting comparison can be made on the end-
essly single-mode region. For fibers with a triangular lat-
ice of holes, a fitting of the cutoff curve has been evalu-
ted according to the expression9

�*/� � ��d/� − d*/��	, �4�

here d* /� is the boundary of the endlessly single-mode
egion, resulting in d* /�=0.406, �=2.80±0.12, and 	
0.89±0.02.9 The same procedure, applied to the �* /�
alues of the square-lattice PCFs reported in Fig. 6, pro-
ides d* /��0.442, �=4.192±0.246, and 	=1.001±0.025.
he boundary between the single-mode and the multi-

ig. 8. Phase diagram of the second-order mode for eight-air-
ole-ring PCFs characterized by the square and the triangular

attices.

ig. 9. Cutoff value V* of the normalized frequency according to
he two definitions for square-lattice PCFs with eight rings. Solid
ines represent the mean values of V* and V*.
1 2
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ode operation areas is reported in Fig. 8 for square-
attice PCFs and triangular ones. Notice that the single-

ode region for square-lattice PCFs, which is the one
bove the curve in Fig. 8, is wider for lower d /� values,
ut the difference is significantly reduced until it disap-
ears as the air-filling fraction increases. Moreover, it can
e noticed that the d* /� value is higher for square-lattice
bers; that is, they can be endlessly single mode in a
ider range of the geometric parameter values with re-

pect to triangular PCFs and can be successfully used in
pplications that need large-mode-area fibers.
A further analysis has been developed on the cutoff

alue of the normalized frequency. As shown in Fig. 9, V1
*

nd V2
* have been evaluated for the eight-air-hole-ring

CFs, starting from the normalized cutoff wavelength at
he d /� values reported in Fig. 6. The mean values of V1

*

nd V2
*, respectively, 2.67 and 2.46, are also reported as

olid lines in Fig. 9 and have been assumed as reference
alues like the 2.405 value of a standard fiber. Figures 10
nd 11 show the V number versus the normalized wave-
ength calculated according to Eqs. (2) and (3) and the cor-
esponding V* mean value as an horizontal solid line. Of
ourse, the crossings between the V* line and the
-number curves for the two formulations give again the

ig. 10. V1 behavior versus the normalized wavelength � /� for
quare-lattice PCFs with d /� between 0.43 and 0.57. A solid
orizontal line is drawn at the fixed value V1

*.

ig. 11. V2 behavior versus the normalized wavelength � /� for
quare-lattice PCFs with d /� between 0.43 and 0.57. A solid
orizontal line is drawn at the fixed value V2

*.
* /� behavior versus d /�, that is, the single-mode–
ultimode phase diagram of Fig. 6.
Finally, it is important to notice that the value of V1

*

ere evaluated for the square-lattice PCFs is lower than
, the value for the triangular PCFs,11 which has been ob-

ained with the same V-number expression and by look-
ng at the second-order-mode field distribution on the fi-
er cross section.11,22 In particular, it has been shown that
n triangular PCFs the second-order-mode effective trans-
erse wavelength, related to the dimension of the defect
egion where the mode fits in, is ��

* �2� at the cutoff con-

ig. 12. Hx (top), Hy (middle), and intensity (bottom) distribu-
ions of the second-order guided mode at � /��0.127 for a four-
ing square-lattice PCF with d /�=0.57.
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ition. As a consequence, the normalized cutoff frequency
ecomes V1

* = �2� /��
* ����.11 In order to extend the same

pproach to the square-lattice PCFs, one has to take the
agnetic field components shown in Fig. 12 into account.

t is important to underline that the field shape of the
econd-order mode in these PCFs is strongly influenced
y the fourfold symmetry that characterizes the square
attice, in particular, by the position of the air holes be-
onging to the first ring. As a consequence, different ��

*

alues can be obtained if the second-order-mode field am-
litude is considered along the horizontal, or vertical, di-
ection or along the 45° one. The two situations are de-
icted in Figs. 13 and 14. In the first case, the field shape
s the same as the one reported for triangular PCFs,11 so
�
* �2� and V1

* ��. In contrast, if the 45° direction is con-
idered, the separation between the first two null values
f the second-order-mode field amplitude increases, as
hown in Fig. 14, since the two opposite air holes belong-
ng to the first ring are more distant. Thus ��

* is higher,
hat is, 2�2�, and, consequently, V1

* �� /�2. It is interest-
ng to point out that the V1

* value calculated in the
resent analysis, which is 2.67, is almost equal to the
ean value between � and � /�2, which is 2.68. The cor-

esponding �* �2.34� is obtained by the mean value of

ig. 13. Section of the square-lattice PCF cross section (solid
urve) and of the Hx field component (dotted curve) along the x
xis.

ig. 14. Section of the square-lattice PCF cross section (solid
urve) and of the Hx field component (dotted curve) along the 45°
irection.
�

he inverse of 2� and 2�2�. In conclusion, it is not pos-
ible to simply extend the derivation of V1

* previously pro-
osed for triangular PCFs to the case of square-lattice
CFs, since a unique value of ��

* cannot be easily found.

. CONCLUSION
thorough analysis has been performed on the cutoff

roperties of square-lattice PCFs by applying a method
hat involves the second-order-mode complex propagation
onstant. The single-mode–multimode phase diagram has
een calculated, and it has been demonstrated that the
ingle-mode operation region of square-lattice PCFs is
ider than that of triangular ones. Moreover, it has been

hown that square-lattice PCFs have also a larger end-
essly single-mode operation region, d /��0.442, com-
ared with the one for triangular PCFs, which is smaller,
eing defined by d /��0.406. Finally, the normalized cut-
ff frequency has been evaluated for square-lattice PCFs,
nd it has been demonstrated that V* is lower than �,
hich is the value obtained for triangular fibers. The re-

ults presented in this paper suggest that square-lattice
CFs have interesting cutoff properties and can be suc-
essfully employed in applications that require large-
ode-area fibers.

Corresponding author S. Selleri can be reached by
hone, 39-0521-905763; fax, 39-0521-905758; or e-mail at
tefano.selleri@unipr.it.
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