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The modal cutoff of square-lattice photonic crystal fibers with a finite number of air-hole rings has been accu-
rately investigated to our knowledge for the first time. By analyzing the leaky behavior of the second-order
mode, we have obtained a phase diagram that describes the regions of single-mode and multimode operation as
well as the endlessly single-mode regime. Furthermore, starting from these results, we have obtained the cut-
off normalized frequency according to two different formulations of the V parameter previously adopted for
fibers with a triangular lattice. A final comparison of the cutoff properties of fibers characterized by a square
lattice and a triangular lattice has been carried out. © 2005 Optical Society of America

OCIS codes: 060.2310, 060.2340, 060.2400.

1. INTRODUCTION

Photonic crystal fibers (PCFs) are characterized by an ar-
ray of air holes running along the entire fiber length,
which provides for the confinement and guidance of
light."? Owing to the huge variety of air-hole arrange-
ments, PCFs offer many possibilities for controlling the
refractive index contrast between the core and the micro-
structured cladding and, as a consequence, offer novel
and unique optical properties.® In particular, it has been
demonstrated that PCFs with a silica core, which guide
light by modified total internal reflection, can be designed
to be endlessly single mode (that is, only the fundamental
mode can propagate in the fiber core for all wavelengths),
unlike conventional fibers that exhibit a cutoff wave-
length below which higher-order modes are supported.‘l’5
A cutoff analysis for PCFs is not trivial as for conven-
tional optical fibers because all the modes propagating in
PCFs with a finite air-hole ring number are leaky.®® The
single-mode regime has already been successfully investi-
gated for triangular PCFs with a silica core, obtained by
removing the central air hole in the fiber cross section,
which are usually described by the hole-to-hole spacing or
pitch, A, and the ratio d/A between the air-hole diameter
and the pitch.>!! In particular, it has been demon-
strated that triangular PCFs are endlessly single mode
for d/A<d"/A, and recently the value d"/A=0.406 has
been proposed.lo’11

The aim of the present analysis is to study the cutoff
properties of square-lattice PCF's, that is, to investigate
the boundary between the single-mode and the multi-
mode operation regimes. In these PCFs, air holes are or-
ganized in a square lattice characterized by the same geo-
metric parameters as the triangular ones, A and d/A, as
shown in Fig. 1. Researchers have already demonstrated
the technological feasibility of square-lattice PCF's, which
can be drawn from intermediate preforms realized with
the standard stack-and-draw fabrication process.12 Re-
cently, square-lattice fibers have been fabricated and
characterized in order to analyze their polarization prop-
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erties, and a great potential for high birefringence has
been shown.'® Promising results have also been obtained
by numerically investigating their guiding,14 dispersion,15
and polarization'® properties. Moreover, compared with
triangular PCFs,'® they present a wider effective area for
fixed d/A and A values, so they can be of practical inter-
est as large-mode-area fibers for high-power delivery. In
order to successfully use square-lattice PCF's for this kind
of application, it is necessary to accurately define their
single-mode operation regime.

In this work the cutoff analysis of the square-lattice
PCFs has been carried out through a method previously
adopted for fibers with a triangular lattice, based on the
leaky nature of the second-order mode,’ and the phase
diagram with the boundary between single-mode and
multimode regions has been obtained. Results have
shown that the endlessly single-mode regime for square-
lattice PCF's is a bit wider than that for triangular ones.

Finally, the information about the single-mode regime
has been used to evaluate the cutoff value V" of the nor-
malized frequency V. As in the case of triangular
PCFs,>117 the problem is to properly choose the values of
the parameters involved in the definition of V, in particu-
lar, the core dimension. In the present analysis, two dif-
ferent definitions of the V parameter have been consid-
ered, and the obtained V" values have been compared
with those given for triangular PCFs.

2. THEORETICAL APPROACH

Different approaches have been proposed in previous
studies to study the single-mode regime of triangular
PCF's, which is the wavelength range where only the first-
order mode is guided and the higher-order ones are un-
bound. In particular, it is necessary to decide clearly at
which wavelength \* the second-order mode is no longer
guided; that is, it becomes a delocalized cladding mode. In
order to find this transition, it is possible to take into ac-
count the divergence at long wavelengths of its effective
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Fig. 1. Cross section of a four-air-hole-ring square-lattice PCF
with air-hole diameter d and pitch A.

area'® or its leakage losses, which are related to the at-
tenuation constant «, the real part of the complex propa-
gation constant.®® In particular, the normalized cutoff
wavelength \*/A can be evaluated by observing the tran-
sition shown by the behavior of a/k(, where % is the wave
number, versus A/A.? This can be made evident by calcu-
lating the @ parameter,

d2 log[ a/kq]

d%log(A) )

because it exhibits a sharp negative minimum at \*/A.°
In the present analysis the phase diagram with single-
mode and multimode operation for square-lattice PCFs
has been obtained by calculating the @ parameter for dif-
ferent normalized wavelengths A\/A and by evaluating its
negative minima for PCFs with d/A in the range of 0.45—
0.57. The analysis has been developed by fixing the
guided-mode wavelength at 633 nm as well as at 1550
nm. The hole-to-hole distance A has been properly se-
lected to obtain the desired normalized wavelength value.
Owing to the strong influence of the air-hole ring number
on the leakage losses of PCFs with a finite cross section,®’
fibers with four, six, and eight rings have been considered
for the modal cutoff analysis. In fact, it has been already
demonstrated that the transition of the @ parameter be-
comes more acute and the method more reliable as the
ring number increases.’

As a second part of the proposed analysis, starting from
the single-mode regime information obtained with the
Q@-parameter approach, we have evaluated the normal-
ized cutoff frequency V'. The V parameter can be easily
calculated in a standard optical fiber, since it depends on
the core radius and the core and cladding refractive indi-
ces, which are all well defined. The choice of these param-
eters for PCFs is not trivial, and several formulations of
the normalized frequency have been proposed in the
literature,>1"1921 o the basis of either geometric and
physical considerations or analogies with classical theory
of conventional fibers. In this study, two formulations of
the V parameter are considered. The first one is

2
—
Vi= TA\’nsz— nFsm (2)

which has been recently proposed for triangular
PCFs.'5?2 In Eq. (2) ney and npgy; are the effective indices,
respectively, of the fundamental guided mode and of the
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fundamental space-filling mode in the air-hole cladding.
The choice of A as the effective core radius can be adopted
also for the PCFs studied here, since it is the natural
length scale of both the triangular and the square
lattices.'>?? The second V-parameter definition here con-
sidered, more similar to the one used for conventional fi-
bers, is

21 5 5
Vo= TP\"nco — FsSM> 3)

where n., is the refractive index of the silica core at the
operation wavelength and p is the effective core radius.
For properly adapting the concept of the V parameter to
the PCF's, several values for p have been proposed in the
literature for fibers chgracterized by a triangular lattice,
which are 0.5A,% A/v3,2%*' 0.625A," 0.64A," and A.>"
In the present study the effective core radius for the
square-lattice PCFs has been assumed equal to 0.67A.
This value, different from all the others previously
adopted for triangular PCF's, has been evaluated through
the method proposed by Brechet et al. 19

The cutoff value V; here calculated for the square-
lattice PCF's has also been compared with the value pre-
viously obtained for triangular ones.!! Then the second-
order-mode field distribution has been analyzed in order
to extend the approach proposed for triangular PCFs!! to
the square-lattice ones.

Finally, it is important to point out the numerical meth-
ods used in this analysis. The complex propagation con-
stants of the fundamental and the second-order modes as
well as the field distributions have been calculated by
means of a full-vectorial modal solver based on the finite-
element method with anisotropic perfectly matched
layers.e’g’24 The multipole method?>?% has also been used
to confirm the simulation results, obtaining a good agree-
ment. The effective index of the mode in the infinite clad-
ding, i.e., the fundamental space-filling mode nyyg, has
been evaluated wusing a freely available software
package.27

3. RESULTS AND DISCUSSION

In order to calculate the @ parameter according to Eq. (1),
one must evaluate the behavior of a/ky versus the nor-
malized wavelength N\/A for the second-order mode. As
shown in Fig. 2, for eight-ring PCFs with different d/A
values, a/k( increases with N\/A; that is, the confinement
of the second-order mode is lower for smaller pitch A. For
all the considered d/A ratios, the curves show a transi-
tion, which is a change in the slope that becomes sharper
as the air-hole diameter increases with respect to the
pitch. Moreover, when d/A is varied from 0.45 to 0.57, the
transition region moves toward the higher \/A values, as
has already been demonstrated for triangular PCFs.® In
addition, notice that when d/A =0.45 it is difficult to iden-
tify the transition, which, in contrast, is very sharp when
d/A=0.57. The same behavior of a/ky has been obtained
for square-lattice PCFs with the lower air-hole ring num-
bers of four and six. However, it must be observed that, in
these cases, as shown in Fig. 3, the transition is not so
sharp even for a high d/A value.
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Fig. 2. Second-order mode a/k as a function of the normalized
wavelength N/A for eight-ring square-lattice PCFs with d/A in
the range of 0.45-0.57.
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Fig. 3. Second-order mode a/k, versus the normalized wave-

length N\/A as a function of the air-hole ring number, which is
four, six, or eight, for a square-lattice PCF with d/A=0.57.

From the previous results, the @ parameter has been
calculated through a finite-difference formula, and the
values obtained for the eight-ring square-lattice PCF's are
reported in Fig. 4. The negative value of the curve mini-
mum becomes higher as d/A increases, reaching —654 at
N A=0.532 for d/A=0.57. As the square-lattice PCF air-
filling fraction decreases, the @ minimum moves toward
the lower N/A values and becomes wide and difficult to
identify with high precision. For example, the negative
minimum almost disappears for the PCFs with d/A
=0.45, and its curve has not even been drawn in the fig-
ure. A similar behavior has also been obtained for PCF's
with fewer air-hole rings. Figure 5, for example, reports
data for PCFs with d/A=0.57, showing that the @ mini-
mum becomes less negative and moves toward higher \/A
values when the ring number decreases. In particular, for
four-ring fibers the dip is very wide, and the most nega-
tive value is only —73 at A\/A=0.571, whereas it is —260 at
N A=0.541 when the square-lattice PCFs have six air-
hole rings.

In summary, Figs. 2-5 clearly show that when the leak-
age behavior is strong, whatever the reason, i.e., low d/A
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or few hole rings, it is difficult to define the transition re-
gion and the related cutoff wavelength. In contrast, when
a high number of hole rings is considered, the slope
change in a/ky is more evident, the @ curve presents a
sharp dip, and it is possible to find reliable values of the
normalized cutoff wavelength A\*/A. These values for the
square-lattice PCF's with eight air-hole rings are reported
in Fig. 6, which also shows data for four- and six-ring
PCFs. Notice that the A"/A values have been reported
only for the well-defined and sharp minima, that is, for
d/A=0.48 for eight-ring PCF's and for d/A =0.50 for four-
and six-ring PCFs. As expected, results change by in-
creasing the air-hole rings, tending to the values of a PCF
with an ideal infinite cladding. This suggests again that
the @-parameter method must be applied assuming a
high ring number.

This conclusion is confirmed also by further comments
on the obtained results. Looking at Fig. 6, it seems that
PCF's with four air-hole rings have a smaller single-mode
region, defined by N/A>\"/A, their cutoff values being
the highest ones. However this result is in contradiction
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Fig. 4. Q-parameter values as a function of the normalized
wavelength N/A for eight-ring square-lattice PCFs with d/A in
the range of 0.45-0.57.
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Fig. 5. @-parameter values versus the normalized wavelength
N A as a function of the air-hole ring number, which is four, six,
or eight, for a square-lattice PCF with d/A=0.57.
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Fig. 7. Second-order-mode normalized effective area A 4/ A? ver-
sus M/ A for square-lattice PCFs with d/A=0.52 and with four,
six, and eight air-hole rings.

with the a/ky values reported in Fig. 3, which are also the
highest for all the considered \/A. Figure 3, in fact, indi-
cates that the second-order mode suffers from high leak-
age losses, and, consequently, only the fundamental mode
can actually propagate in a wider single-mode spectral
range. In other words, the @-parameter approach fails
when a sharp minimum does not occur as shown in Fig. 5
for the case of four air-hole rings. In contrast, when eight
hole rings are considered, results are clearly readable and
reliable.

It is important to highlight that the \*/A evaluated for
PCFs with many rings of air holes also applies to fibers
with few rings in that \*/A, in any case, is an upper limit
of the cutoff wavelength. This means that fibers with a re-
duced number of rings present an even larger single-mode
region.

In order to give a further confirmation of what is
stated, the normalized cutoff wavelength has also been
evaluated according to another approach, the method
based on the second-order-mode effective area proposed
by Mortensen.'® Simulation results for the PCFs with
d/A=0.52 are shown in Fig. 7. Notice that the \*/A val-
ues, indicated by the crossing of the solid lines with the
horizontal axis, are, respectively, 0.273, 0.302, and 0.308
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for the PCFs with four, six, and eight air-hole rings. This
means that \"/A increases with the air-hole ring number;
that is, the PCF's that provide the better field confinement
have the smallest single-mode operation region and not
the other way round as could be suggested by Fig. 6.
Moreover, the difference between the normalized cutoff
wavelength values almost vanishes if PCFs with six and
eight rings are considered.

Thus eight-ring square-lattice PCFs offer the most re-
liable results and, in the following, will also be used to
compare square- and triangular-lattice PCF characteris-
tics.

A first interesting comparison can be made on the end-
lessly single-mode region. For fibers with a triangular lat-
tice of holes, a fitting of the cutoff curve has been evalu-
ated according to the expression’

N'/A = a(d/A -d"IN), (4)

where d"/A is the boundary of the endlessly single-mode
region, resulting in d"/A=0.406, @=2.80+0.12, and y
=0.89+0.02.° The same procedure, applied to the \*/A
values of the square-lattice PCF's reported in Fig. 6, pro-
vides d*/A=0.442, @=4.192+0.246, and y=1.001+0.025.
The boundary between the single-mode and the multi-
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Fig. 8. Phase diagram of the second-order mode for eight-air-
hole-ring PCF's characterized by the square and the triangular
lattices.
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mode operation areas is reported in Fig. 8 for square-
lattice PCFs and triangular ones. Notice that the single-
mode region for square-lattice PCFs, which is the one
above the curve in Fig. 8, is wider for lower d/A values,
but the difference is significantly reduced until it disap-
pears as the air-filling fraction increases. Moreover, it can
be noticed that the d“/A value is higher for square-lattice
fibers; that is, they can be endlessly single mode in a
wider range of the geometric parameter values with re-
spect to triangular PCFs and can be successfully used in
applications that need large-mode-area fibers.

A further analysis has been developed on the cutoff
value of the normalized frequency. As shown in Fig. 9, V:
and Vé have been evaluated for the eight-air-hole-ring
PCFs, starting from the normalized cutoff wavelength at
the d/A values reported in Fig. 6. The mean values of Vi
and V,, respectively, 2.67 and 2.46, are also reported as
solid lines in Fig. 9 and have been assumed as reference
values like the 2.405 value of a standard fiber. Figures 10
and 11 show the V number versus the normalized wave-
length calculated according to Eqs. (2) and (3) and the cor-
responding V" mean value as an horizontal solid line. Of
course, the crossings between the V' line and the
V-number curves for the two formulations give again the
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N'/A behavior versus d/A, that is, the single-mode—
multimode phase diagram of Fig. 6. .

Finally, it is important to notice that the value of V1
here evaluated for the square-lattice PCF's is lower than
7, the value for the triangular PCFs,11 which has been ob-
tained with the same V-number expression and by look-
ing at the second-order-mode field distribution on the fi-
ber cross section.!?? In particular, it has been shown that
in triangular PCF's the second-order-mode effective trans-
verse wavelength, related to the dimension of the defect
region where the mode fits in, is A =2A at the cutoff con-
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Fig. 12. H, (top), H, (middle), and intensity (bottom) distribu-
tions of the second-order guided mode at \/A=0.127 for a four-
ring square-lattice PCF with d/A=0.57.
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Fig. 13. Section of the square-lattice PCF cross section (solid
curve) and of the H, field component (dotted curve) along the x
axis.
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Fig. 14. Section of the square-lattice PCF cross section (solid
curve) and of the H, field component (dotted curve) along the 45°
direction.

dition. As a consequence, the normalized cutoff frequency
becomes Vi:(27'r/ )\i)A: .1 In order to extend the same
approach to the square-lattice PCFs, one has to take the
magnetic field components shown in Fig. 12 into account.
It is important to underline that the field shape of the
second-order mode in these PCF's is strongly influenced
by the fourfold symmetry that characterizes the square
lattice, in particular, by the position of the air holes be-
longing to the first ring. As a consequence, different A’
values can be obtained if the second-order-mode field am-
plitude is considered along the horizontal, or vertical, di-
rection or along the 45° one. The two situations are de-
picted in Figs. 13 and 14. In the first case, the field shape
is the same as the one reported for triangular PCFs,! so
A =2A and V;= . In contrast, if the 45° direction is con-
sidered, the separation between the first two null values
of the second-order-mode field amplitude increases, as
shown in Fig. 14, since the two opposite air holes belong-
ing to the first ring are more distant. Thus )\j is higher,
that is, 2V2A, and, consequently, Vi = 7/V2. It is interest-
ing to point out that the V; value calculated in the
present analysis, which is 2.67, is almost equal to the
mean value between 7 and 7/\2, which is 2.68. The cor-
responding )\122.34/\ is obtained by the mean value of
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the inverse of 2A and 2\3‘5A. In conclusion, it is not pos-
sible to simply extend the derivation of V; previously pro-
posed for triangular PCFs to the case of square-lattice
PCFs, since a unique value of )\j cannot be easily found.

4. CONCLUSION

A thorough analysis has been performed on the cutoff
properties of square-lattice PCFs by applying a method
that involves the second-order-mode complex propagation
constant. The single-mode—multimode phase diagram has
been calculated, and it has been demonstrated that the
single-mode operation region of square-lattice PCFs is
wider than that of triangular ones. Moreover, it has been
shown that square-lattice PCFs have also a larger end-
lessly single-mode operation region, d/A<0.442, com-
pared with the one for triangular PCF's, which is smaller,
being defined by d/A <0.406. Finally, the normalized cut-
off frequency has been evaluated for square-lattice PCFs,
and it has been demonstrated that V" is lower than m,
which is the value obtained for triangular fibers. The re-
sults presented in this paper suggest that square-lattice
PCF's have interesting cutoff properties and can be suc-
cessfully employed in applications that require large-
mode-area fibers.

Corresponding author S. Selleri can be reached by
phone, 39-0521-905763; fax, 39-0521-905758; or e-mail at
stefano.selleri@unipr.it.
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